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E F F E C T  O F  B R O K E N  I C E  O N  T H E  W A V E  R E S I S T A N C E  O F  A N  A M P H I B I A N  

A I R - C U S H I O N  V E H I C L E  I N  N O N S T A T I O N A R Y  M O T I O N  

V. M. Koz in  and A. V.  Pogore lova  UDC 624.124:532.595 

The uniformly accelerated motion of an amphibian air-cushion vehicle on the surface of a basin 
covered by finely small  ice floes is considered. 

1. The hydrodynamic problem of an amphibian air-cushion vehicle (AACV) that  moves under ice 
conditions is modeled by a system of surface pressures [1] moving over the weighable free surface of a floating 
fluid [2-4]. 

We consider an infinite field covered by broken ice over which a given system of surface pressures q 
moves with velocity u(t).  The coordinate system aligned with the vehicle is positioned in the following way: 
the xOy  plane coincides wi th  the unperturbed ice-water interface, the x axis is along the motion of the 
vehicle, and the z axis is directed vertically upward. The water is an ideal incompressible fluid of density P2, 
and the fluid motion is potential .  The surface density of the floating fluid is set by a continuous function 
re(x, y)[3]: 

re(x, y) = pl(x,y)h(x,  y) = p0,1(x, y)h(x, y), 

where pi(x,  y) is the ice density smeared out over the fluid surface, p0 is the physical density of ice, si(x, y) 
is a dimensionless function of ice-floe tightness (0 ~ si ~< 1), and h(x,  y) is the ice thickness. It is assumed 
that Pi and h are constant quantities. 

According to [1, 5], the wave resistance acting on the AACV is calculated by the formula 

ff0  R = q ~ x  dxdy ,  (1.1) 
(~) 

where f~ is the region of load distribution q(x, y, t) and w(x,  y, t) is the floating-fluid deformation surface; in 
the linear theory of waves, in a specific coordinate system this surface is determined as 
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Here u is the velocity of the system of surface pressures. 
The desired function of the velocity potential 3(x ,  y, z, t) should satisfy the Laplace equation A3 = 0 

and the linearized boundary  conditions 

[ 033 , 023 033 U 2 (033 "~ 

, o3 023 u2 Oq Oq 
= --P2g ~ z  -- P2 \ Ot 2 -- ut ~ -- 2u ~ + c9x2 j -- - ~  + u -~x for z = 0, (1.3) 
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- - = 0  for z = - H .  
Oz 

Here H = Hi - b, where Hi is the depth of the basin and b = plh/p2 is the depth of ice immersion in static 
equilibrium. For large depths, when H1 is greater than h, one can assume that  H ~ Hi.  

Provided that  the vehicle is idle at the moment  t = 0 and there are no perturbations, except for the 
static deformation of the free surface, the initial conditions for the function gS(x, y, z, t) are written in the 
form 

o, : o .  (,.4) 
p2 0--)--Ot z=0,t=0 

2. Let tile pressure q not depend on time in the specified moving coordinate system, i.e., q = q(x, y). In 
addition, it is assumed that  the functions ~(x,  y, z, t) and q(x, y) satisfy the conditions necessary to represent 
them as an expansion into Fourier integrals in two variables x and y. According to [2], we write 

O G  7r  

1i i ii< @(x,y,z , t)  = ~ kdk  dO F e x p ( - k z )  + Eexp (k z ) )  

o -~ (~) 

x exp (ik((x - Xl) cos 0 + (y - Yl) sin 0)) dxt dul, (2.1) 

7r  

I / /  q(x,y) = ~ kdk dO q ( x l , y l ) e x p ( i k ( ( x - x l ) c o s O + ( y - y l ) s i n O ) ) d x l d y l ,  

o - r  (C~) 

where F and E are desired functions of the variables 2:1~ Yl, t, k, and 0. 
Subst i tut ion of the expressions (2.1) into the boundary conditions (1.3) allows one to obtain the 

dependence between F and E and the differential equation for F: 

E = F exp (2kH), 

F~'~ - 2F[uit + Fu2it 2 - Fu~# = 
p2gFk tanh (kH) 

plhk tanh (kH) + P2 
+ uq# (2.2) 

(1 + exp (2kH))(plhk tanh(kH) + P2)' 

it = ik cos 0. 

To solve Eq. (2.2), by analogy with [6], the function 

F1 = F exp (-/zs) (2.3) 

t 

is introduced into the consideration. Here s(t) = / u(r) dr is the distance passed by the AACV for the time 
J 

0 
t. 

Subst i tut ing (2.3) into (2.2) in the solution of Eq. (2.2) with the use of the initial conditions (1.4) 
results in the following expression for FI: 

F ~  = m 

t 

sin (flit) i j31 f(~') cos 031~') d~" - cos/31031t) 

0 

t 

f f ( r )  sin 031~-) dz, 
o 

(2.4) 

/ p2gk tanh (kH) f(T)  = u('r)q(xl, Yl)#exp (--its(r)) 

V pl hk tanh ( kH) + P2' (1 + exp (2k H) ) (pl hk tanh ( kH) + P2)" 

Substi tut ing the resulting dependences (2.2)-(2.4) for E and F into the expression for the velocity 
potential (2.1), using formulas (1.1) and (1.2), and replacing the variables k = A and kcos 0 = a, after simple 
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t ransformations one obtains a formula in the general form for the wave resistance of the system of surface 
pressures q(x, y) upon nonstat ionary motion over the free surface of a floating fluid: 

t R_ l//Oq 1 /  
P2g q '~xdxdy + ~2p2grr 2 u(T)cos(131(t - ~'))d7 

(~) o 

0 -,~ 

f f  
= / / q ( x ,  y) cos (xa) cos ( y V ~  - a 2) dxdy, C1 

(~) 

= [ f  q(x, y) cos (x )sin (yv - dx dy, 
(fl) 

= f f  q(x, y) sin (xa) cos ( y v / ~  " - a s) dx dy, C3 
(fl) 

(2.5) 

/ ~ p2gA t anh  (AH) 
C4 = q(x, y) sin (xa) sin (yv/A 2 - a s) dx dy, f~l = plhA t anh(AH)  + P2" 

(~) 

If a rectangular or elliptic, in plan, system of constant pressures q(x, y) -= qo - const is taken as a 
system of moving pressures q(x, y), the theoretically obtained curve of wave resistance [1, 2, 5, 6] has an 
infinite number  of vibrations in the region of small velocities. This  result is not suppor ted  by experimental 
data. This  drawback of the theory can be overcome by introducing a system of pressures q(x,y) that  is 

described by means of the function of hyperbolic tangent [6]: 

q~ + L ) )  - t a n h ( o q ( x - L ) ) ]  q(x, y) = 

Here q0 is the nominal pressure, L is the vehicle length, w = L / B  is the elongation of the vehicle, B is the 
vehicle width, and a l  and a2 the parameters  that  describe the degree of deviation of the  pressure distribution 
in the longitudinal and transversal directions from the rectangular form. The  greater ~ l  and a2 in magnitude, 
the closer the form of the pressure distribution to a rectangle. As c~l, (~2 --' co, we have q equivalent to q0 
uniformly distr ibuted over the rectangle. For bet ter  agreement between the theoret ical  and experimental 

results, Doctors and Sharma [6] proposed to use alL = a2L = 10. 
For the uniformly accelerated motion of the specified system of pressures (2.6), the expression (2.5) 

takes the form 

R/D = Aqo/(p2gL), 

1 
7r2w f (1 --T / kL~th ( ~ / A ) ) d r  A(kL, k~,e,w,'y) (alL)2(a2L)2kLk~ j v c o s ,  kLka V~)~h-(~-~--k 1 ] 

o 
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/ A d A / c ~  o \ k~-ka ) sinh 2 s i n 2 ( a / 2 ) s i n 2 ( v ~ ' - a 2 / ( 2 c ~  a 2 da, 
(zra/(2alL)) sinh 2 ( ~ r v ~ -  a 2 / ( 2 a 2 L ) ) ~  

gL plh L H a 
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In contras t  to (2.5), here the variables of integration are dimensionless. 

Using the results of  [2] and the system of pressures (2.6), for the wave-resistance coefficient of the 
AACV during its s ta t ionary  motion over the floatation-fluid surface, one can  derive the formula 

o o  

71"30' / /3 2 sin 2 (/3/2) sin 2 ( x / ~  -- ~2/(2co)) A dA 

A(kL, E, co, 3") = 2(alL)2(a2L) 2 d V/-fi - /32 sinh 2 (zr~/(2alL)) sinh 2 (lr v / ~  - ~2/(2a2L))'  
Ao 

~/ kL A t anh  (3'A) (2.8) 

= 1 + r t anh  (3`A)" 

Here A0 is the solution of the  transcendental  equation kL tanh  (3'A) = A(1 + eA tanh  (3`A)), u = const ,  and the 
other notion corresponds to formula (2.7). 

3. The results of  the numerical calculations by formulas (2.7), (2.8) were compared with known 

theoretical  results. For a zero fo t a t ion  parameter  (e = 0), the wave-resistance curve calculated by formulas 

(2.7) and (2.8) agrees with tile results of [6], which are plotted as d iagrams,  for all the depth, elongation, 
and acceleration parameters ,  which were considered in [6], namely, for 3` = 0.25 and ? = oc and co = 2; 

k~ = 0.05 and k~ = 0.1, and the stat ionary motion. For the flotation pa rame te r s  e = 0.045 and r = 0, 

the results obtained by means  of formula (2.8) were compared with the numerical  results of [2], in which 
the s ta t ionary  motion of a rectangular  system of constant  pressures was studied.  The effect of the form 

of the cumulative distr ibution function of surface pressure q(x, y) on the magni tude  of the maximum wave 

resistance was analyzed. I t  was found that if the function q(x, y) is defined by formula (2.6) with the 
coefficients a l l  = a2L = 10 for any r co, and 7, the max imum value of A exceeds the corresponding value 

from [2] by 18-20% in average. Here the form of the pressure function does not affect the value of the 

critical number  k~ at which the maximum wave resistance to the AACV is reached. As a l L  and a2L are 
increased, the results of calculat ions for the maximum value of the coefficient A by fornmla (2.8) tend to the 

corresponding values in [2] and coincide with an accuracy of 2% already for cttL = a2L = 50. 

The  main results of the calculations by formulas (2.7) and (2.8) are given in Figs. 1-4. Figures 1 and 
2 show the maximum value of the wave-resistance coefficient A (the quan t i ty  A*) versus the elongation of 

the vehicle co for r = 0 and  0.045, respectively. Here curves 1-9 refer to the  s ta t ionary  case (k~ = 0.05 and 

0.10): curves 1-3 for 3' = cx~, curves 4-6 for 3  ̀= 0.5, and curves 7-9 for 3` = 0.25. One can see from Figs. 1 

and 2 t ha t  the insignificant decrease in the maximum value of the wave-resistance coefficient occurs for deep 
water  and great elongation with acceleration. The effect of acceleration on A* is enhanced with decrease in 

depth  3  ̀and elongation w. The  flotation decreases the max imum wave resis tance.  
Figures 3 and 4 show values of k~ at which the vehicle undergoes the  max imum wave resistance for 

r = 0 and 0.045, respectively. Here curves 1-3 refer to 3  ̀ = oo, 0.5, and  0.25 for k~ = 0.1, curves 4-6 to 

3  ̀ = oo, 0.5, and 0.25 for k~ = 0.05, and curves 7-9 to 3" = c~, 0.5, and  0.25 for the s tat ionary case. It  is 

no tewor thy  that,  for the s ta t ionary  problem, the m a x i m u m  wave resistance occurs when the vehicle moves 

with a constant  critical velocity u = u*; for uniformly accelerated motion, the  max imum of R corresponds to 

the momen t  t, when the instantaneous velocity of the vehicle is u = at = u*. As can be seen from Figs. 3 
and 4, the flotation leads to the shift of k~ toward smaller velocities by 13% on average for any co and 3" in 

uniformly accelerated mot ion  and in the stationary case. The  growth of accelerat ion results in a significant 

displacement  of the point  of m a x i m u m  wave resistance toward large velocities; the more shallow the water, 

the grea ter  the effect of acceleration. 
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Analyzing the numerical results, to calculate the critical k~ in the range 1 ~< w ~< 3, -), /> 0.5, and 

for e = 0, one can use the formulas for k~ = 3.01 - 14.7ka + 34k 2 - (0.21 - 1.3ka)w for 0 < ka ~< 0.1 and 

k~ = 3.01 - 0.21w in the s ta t ionary  case; the error of the calculations performed with the use of these values 

is smaller than  5% compared  to the  numerical  results. 

Along with calculations of the  wave resistance of the AACV upon  motion over the field of small ice 

floes, our studies allow one to give recommendat ions  on the choice of the modes of motion of AACVs employed 

under the conditions of navigable canals  in continuous ice. The calculat ions show that  to prevent breaking off 
of the canal edges in the  sites with a th in  ice cover and encumbering of the lat ter  by large ice floes hindering 

the motion of displacing vehicles, AACVs  must  move with m a x i m u m  acceleration. 
The resulting dependences are of interest  for the solution of the inverse problem as well. As follows from 

theoretical calculations, to expand the  broken-ice field or to refine ice floes in the previously built  canal, the 
AACV must move in a s ta t ionary  regime with velocities recommended depending on the vehicle parameters  

and ice situation. 
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